Maths

Calculation Policy

2023

'Enjoy, Explore and Learn'

This document has been largely adapted from White Rose calculation Policy. It is a working document and will be revised and amended as necessary.

EYFS will use concrete resources and pictorial representations to teach the following objectives.

Addition - EYFS

Objective and strategy	Concrete	Pictorial
Combining 2 parts to make a whole Use a variety of resources e.g. shells, teddy bears, cars. Part-whole models	Use cubes to add two numbers together. Use part part whole model	Use pictures to add two numbers together.
Counting on	Start with the larger number and count on 1 by 1 to find the answer.	Start at the larger number and count on in ones to find the answer.

Regrouping to make 10 Using a ten frames and counters/cubes or numicon.		This obje manip	ive is only taught using concrete atives unless pupils are ready.
In addition to building on strategies from EYFS, children in Year 1 will be taught addition in the following ways.			
Addition - Year 1			
Objective and strategy	Concrete	Pictorial	Abstract
Combining 2 parts to make a whole Use a variety of resources e.g. shells, teddy bears, cars. Part-whole models			$4+3=7$ Four is a part, 3 is a part and the whole Use is seven. 埗 the partpart whole diagram to move into the abstract.

Counting on

		10 s 1 s 1111 $\ldots \ldots \ldots$ 4 9 Children to represent the base 10 with lines for tens and dots for ones.	
Use of base 10 to combine two numbers Two digit + 2 digit	Add together the ones and then add the tens. Use base 10 blocks before moving onto place value counters.	Children represent the base 10 in a place value chart with lines and dots as before.	$\left.\begin{aligned} & \left.\int_{1}^{21}\right\|^{+42} /^{42} \\ & 201402 \\ & 20+40=60 \\ & 2+1=3 \\ & 60+3=63 \end{aligned} \right\rvert\, \begin{array}{r} 21+42= \\ \\ \end{array}$

Find the difference Using cubes, Numicon and other objects	Calculate the difference between 8 and 5 .	Children to draw the cubes/concrete objects that they have used. Use the bar model to illustrate what they need to calculate.	Find the difference between 8 and 5 . $8-5$, the difference is ? Children to explore why 9-6=8-$5=7-4$ have the same difference. Hannah has 23 sandwiches. Helen has 15 sandwiches. Find the difference between the number of sandwiches.
Part whole model	Link to addition- use the part whole model to help explain the inverse between addition and subtraction. If 10 is the whole and 6 is one of the parts. What is the other part? $10-6=$	Use a pictorial representation of objects to show the part whole model.	Move to using numbers within the part whole model.

Making 10 Using a ten frame		Children to present the ten frame pictorially and discuss what they did to make 10.	Children to show how thay can make 10 by partitioning. $\begin{aligned} & 14-4=10 \\ & 10-1=9 \end{aligned}$
In addition to building on strategies from Year1, children in Year 2 will be taught subtraction in the following ways.			
Subtraction - Year 2			
Use of base 10 2 digit subtract 1 digit and 2 digit subtract 2 digit without an exchange.	48-7 Show how you partition numbers to subtract. Make the larger number first.	Children to represent the base 10 pictorially.	Column method or children could count count back 7 .

\begin{tabular}{|c|c|c|c|}
\hline Recognising and making equal groups. \& There are 3 equal groups, with 4 in each group. \& Children to represent the practical resources in a picture. \& $4+4+4=12$

\hline Doubling \& Use practical activites to show how to double a number. \& \begin{tabular}{l}
Double 4 is 8

\square
\square
\square
\square

Draw pictures to show how to double a number.
\end{tabular} \& Learn double facts and record as a number sentence.

\hline | Counting in multiples. |
| :--- |
| Use cubes, Numicon and other objects in the classroom. | \& Count in multiples supported by concrete objects in equal groups. \& Use a number line or pictures to continue support when counting in multiples.

\[
\underbrace{sing sin}_{sion is}

\] \& | Count multiples of a number aloud. |
| :--- |
| Write sequences with multiples of numbers. |
| 2,4,6,8.10 |
| 5,10,15,20,25 |

\hline
\end{tabular}

Sharing objects into groups.

	about the number sentences that can be created. E.g. $15 \div 3=5$ $15 \div 5=3$ $5 \times 3=15$ $3 \times 5=15$		$\begin{aligned} & 2 \times 5=10 \\ & 5 \times 2=10 \\ & 10 \div 5=2 \\ & 10 \div 2=5 \end{aligned}$
Repeated subtraction	$6 \div 2=3$	Children to represent repeated subtraction pictorially	Abstract number line to represent the equal groups that have been subtracted.
Division with a remainder 2 digit $\div 1$ digit	$13 \div 4=$ Use of lollipop sticks to form wholes- squares are made because we are dividing by 4 . \square \square \square There are 3 whole squares, with 1 left over.	Children to represent the lollipop sticks pictorially.	$13 \div 4=3$ remainder 1 Children should be encouraged to use their timestable facts and can also represent this on a

Skill: Add 1 and 2-digit numbers to 20	Year: 1/2
$8+7=15$ $8+7=15$ (2) 5	When adding onedigit numbers that cross 10 , it is important to highlight the importance of ten ones equalling one ten. Different manipulatives can be used to represent this exchange. Use concrete resources alongside number lines to support children in understanding how to partition their jumps.

Skill: Add 1-digit and 2-digit numbers to 100											Year: 2/3
 5 38 $38+5=43$											When adding single digits to a two-digit number, children should be encouraged to count on from the larger number. They should also apply their knowledge of number bonds to add more efficiently e.g. $8+5=13$ so 38 $+5=43$. Hundred squares and straws can support children to find the number bond to 10 .

Skill: Subtrac	-digit numbers within 10	Year: 1
	$7-3=4$	Part-whole models, bar models, ten frames and number shapes support partitioning. Ten frames, number tracks, single bar models and bead strings support reduction. Cubes and bar models with two bars can support finding the difference.

Skill: Subtract 1 and 2-digit numbers to 20	Year: 1/2
	When subtracting one-digit numbers that cross 10 , it is important to highlight the importance of ten ones equalling one ten. Children should be encouraged to find the number bond to 10 when partitioning the subtracted number. Ten frames, number shapes and number lines are particularly useful for this.

Skill: Solve 1-step problems using multiplication \quad| Year: $1 / 2$ |
| :--- |

Skill: 2 times table	Year: 2
$\begin{array}{lllllllllllll}\mid & \mid & \mid & 1 & \mid & \mid & 1 & \mid & \mid & \mid c & \mid & \mid & \mid\end{array}$ $-\infty-00-00-00-00-00-00-00-$	Encourage daily counting in multiples both forwards and backwards. This can be supported using a number line or a hundred square. Look for patterns in the two times table, using concrete manipulatives to support. Notice how all the numbers are even and there is a pattern in the ones. Use different models to develop fluency.

Skill: 5 times table	Year: 2
$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & (10 \\ \hline 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & (20 \\ \hline 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & (3) \\ \hline 31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 & (44 \\ \hline 41 & 42 & 43 & 44 & 45 & 46 & 47 & 48 & 49 & 5 \\ \hline \end{array}$	Encourage daily counting in multiples both forwards and backwards. This can be supported using a number line or a hundred square. Look for patterns in the five times table, using concrete manipulatives to support. Notice the pattern in the ones as well as highlighting the odd, even, odd, even pattern.

Skill: Solve 1-step problems using multiplication (sharing) \quad| Year: $\mathbf{1 / 2}$ |
| :--- |

Skill: Solve 1-step problems using division (grouping) \quad| Year: $1 / 2$ |
| :--- |

Skill: Divide 2-digits by 1-digit (sharing with no exchange)		Year: 1/2
Tens	When dividing larger numbers, children can use manipulatives that allow them to partition into tens and ones. Straws, Base 10 and place value counters can all be used to share numbers into equal groups.	
Part-whole models can provide children with a clear writen method that matches the concrete representation.		

